Regional inverse modeling for high reactive species with PYVAR-CHIMERE
Abstract
The degradation of air quality is a worldwide environmental problem: according to the World Health Organization WHO, 92% of the world's population breathe polluted air in 2016. A number of air pollutants associated with respiratory disease and shortened life expectancy play a particularly important role in global outdoor air pollution. In addition to threatening both human health and ecosystems, these gaseous air pollutants including nitrogen oxides (NOx=NO+NO2), sulfur dioxide (SO2), ammonia (NH3), and volatile organic compounds (VOCs) could be precursors of ozone (O3) and Particulate Matter (PM). Without a strong scientific back-up to determine their different sources, the necessary regulations to improve air quality will not be efficient. To date, only chemistry-transport models (CTM) are able to describe pollutant concentrations at any location in the world and their evolution in the atmosphere. Consequently, they have become essential tools for studying air quality. However, CTM are hampered by incomplete information on gaseous precursors and one of the large shortcoming for simulating the gaseous pollutants budgets is the lack of high spatio-temporal variability for the emission estimations provided as inputs for chemistry-transport models. For all these reasons, an inverse system called PYVAR-CHIMERE has been developed, operating in synergy between a CTM and atmospheric observations, and being adjust for the highly reactive species of interest here, as NO2. We present here the first results of this Bayesian variational inverse method for the quantification of NO2 emissions both over Europe (in March 2011) and over China (in January 2015), with a spatial resolution of 0.5°x0.5° and at a weekly temporal resolution, constrained by surface measurements and OMI NO2 satellite observations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A33A2339F
- Keywords:
-
- 0322 Constituent sources and sinks;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 3315 Data assimilation;
- ATMOSPHERIC PROCESSES;
- 1910 Data assimilation;
- integration and fusion;
- INFORMATICS;
- 3260 Inverse theory;
- MATHEMATICAL GEOPHYSICS