Impact of a Ground Network of Miniaturized Laser Heterodyne Radiometers (mini-LHRs) on Global Carbon Flux Estimates
Abstract
We present the simulated impact of a small (50 instrument) ground network of NASA Goddard Space Flight Center's miniaturized laser heterodyne radiometer (mini-LHR), a small, low cost ( 50k), portable, and high precision CH4 and CO2 measuring instrument. Partnered with AERONET as a non-intrusive accessory, the mini-LHR is able to leverage the 500+ instrument AERONET network for rapid network deployment and testing, and simultaneously retrieve co-located aerosol data, an important input for sattelite measurements. This observing systems simulation experiment (OSSE) uses the 3-D GEOS-Chem chemistry transport model and 50 strategically selected sites to model flux estimate uncertainty reduction of both TCCON and mini-LHR instruments. We found that 50 mini-LHR sites are capable of improving global uncertainty by up to 70%, with local improvements in the Southern Hemisphere reaching to 90%. Our studies show that addition of the mini-LHR to current ground networks will play a major role in reduction of global carbon flux uncertainty.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A33A2335D
- Keywords:
-
- 0322 Constituent sources and sinks;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 3315 Data assimilation;
- ATMOSPHERIC PROCESSES;
- 1910 Data assimilation;
- integration and fusion;
- INFORMATICS;
- 3260 Inverse theory;
- MATHEMATICAL GEOPHYSICS