Measurements of 4 Atmospheric Trace Gases Outside Homes Adjacent to a Multiwell Pad During Drilling, Hydraulic Fracturing, and Production Phases, Using Low-Cost Sensors and Artificial Neural Network Quantification Techniques
Abstract
In Colorado and elsewhere in North America, the oil and gas production industry has been growing alongside and in the midst of increasing urban and rural populations. These coinciding trends have resulted in a growing number of people living in close proximity to petroleum production and processing activities, leading to potential public health impacts. Combustion-related emissions from heavy-duty diesel vehicle traffic, generators, compressors, and production stream flaring can potentially lead to locally enhanced levels of nitrogen oxides (NOx), carbon monoxide (CO), and carbon dioxide (CO2). Venting and fugitive emissions of production stream constituents can potentially lead to locally enhanced levels of methane (CH4) and volatile organic compounds (VOCs), some of which (like benzene) are known carcinogens. NOx and VOC emissions can also potentially increase local ozone (O3) production. After learning of a large new multiwell pad on the outskirts of Greeley, Colorado, we were able to quickly mobilize portable air quality monitors outfitted with low-cost gas sensors that respond to CH4, CO2, CO, and O3. The air quality monitors were installed outside homes adjacent to the new multiwell pad several weeks prior to the first spud date. An anemometer was also installed outside one of the homes in order to monitor wind speed and direction. Measurements continued during drilling, hydraulic fracturing, and production phases. The sensors were periodically collocated with reference instruments at a nearby regulatory air quality monitoring site towards calibration via field normalization and validation. Artificial Neural Networks were employed to map sensor signals to trace gas mole fractions during collocation periods. We present measurements of CH4, CO2, CO, and O3 in context with wellpad activities and local meteorology. CO and O3 observations are presented in context with regional measurements and National Ambient Air Quality Standards for each. Wind speed and direction measurements were used to indicate when air masses originated from the direction of the multiwell pad. CO2 mole fractions were used to estimate planetary boundary layer height and CH4 mole fractions were used to identify periods conducive to the pooling and accumulation of production stream venting and fugitive emissions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A31B2167C
- Keywords:
-
- 0322 Constituent sources and sinks;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0345 Pollution: urban and regional;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0368 Troposphere: constituent transport and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 3307 Boundary layer processes;
- ATMOSPHERIC PROCESSES