Variability of Kelvin wave momentum flux from high-resolution radiosonde and radio occultation data
Abstract
Direct measurement of momentum flux from Kelvin waves in the stratosphere remains challenging. Constraining this flux from observations is an important step towards constraining the flux from models. Here we present results from analyses using linear theory to estimate the Kelvin wave amplitudes and momentum fluxes from both high-resolution radiosondes and from radio occultation (RO) data. These radiosonde data are from a contiguous 11-year span of soundings performed at two Department of Energy Atmospheric Radiation Measurement sites, while the RO data span 14 years from multiple satellite missions. Daily time series of the flux from both sources are found to be in quantitative agreement with previous studies. Climatological analyses of these data reveal the expected seasonal cycle and variability associated with the quasi-biennial oscillation. Though both data sets provide measurements on distinct spatial and temporal scales, the estimated flux from each provides insight into separate but complimentary aspects of how the Kelvin waves affect the stratosphere. Namely, flux derived from radiosonde sites provide details on the regional Kelvin wave variability, while the flux from RO data are zonal mean estimates.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A21I2289S
- Keywords:
-
- 0340 Middle atmosphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0341 Middle atmosphere: constituent transport and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 3311 Clouds and aerosols;
- ATMOSPHERIC PROCESSES;
- 3375 Tropopause dynamics;
- ATMOSPHERIC PROCESSES