Evaluation of pollutant emissions in North China Plain using aircraft measurements from the Air Chemistry Research In Asia (ARIAs) campaign
Abstract
The North China Plain (NCP) is one of the most populated and polluted regions on Earth. With rapid economic development in past decades, air pollution including heavy atmospheric aerosol loadings became severe in this region, leading to environmental and climate problems. An aircraft campaign, Air Chemistry Research In Asia (ARIAs), was conducted in spring 2016 (in parallel to KORUS-AQ) to understand air quality in the NCP and transport of air pollutants from this area. Measurements of trace gases such as O3, CO, and SO2 and aerosol optical properties were analyzed to investigate the anthropogenic emissions in the NCP. Both high-efficiency combustion such as from automobiles and modern power plants as well as low-efficiency combustion such as from biomass burnings were identified. Transformations of primary pollutants and formation of secondary pollutants were simulated using the EPA CMAQ v5.2 model. The global HTAP-EDGAR v4.2 emission inventory of year 2010 was processed with SMOKE v4.5 to drive CMAQ. Modeling results were evaluated with aircraft observations to improve our knowledge of anthropogenic emissions and transport. We also used satellite observations including OMI SO2/NO2 and MODIS AOD to evaluate the model performance in the NCP. Through the comparison, we estimated the changes in emissions of major anthropogenic pollutants from 2010 to 2016. Sensitivity experiments with improved emission inventory were conducted to better investigate the air pollution in the NCP.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A13F2131H
- Keywords:
-
- 0305 Aerosols and particles;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0322 Constituent sources and sinks;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0345 Pollution: urban and regional;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0365 Troposphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE