Simulating Xenon Bubble Chambers for Dark Matter Detection
Abstract
Dark Matter, despite the strong theoretical and observational evidence to support its existence, continues to elude detectors. If dark matter is composed of weakly interacting massive particles (WIMPs), bubble chambers may be an effective way to detect dark matter. In order to unambiguously detect WIMPs, we must gain a better understanding of the background events present in a bubble chamber. A key step to understanding the backgrounds in the newly assembled prototype Xenon Bubble Chamber (XEBC) is accurate 3D reconstruction of bubble positions. To do this, we use a photo of the nucleation event with two separately angled mirrors to provide a stereoscopic view of each bubble. The accuracy of this 3D reconstruction relies on an optical model of the chamber, which can be tuned using features with known locations in the chamber images. We produce a goodness-of-fit function that quantifies agreement between target positions of rays and simulated position of rays, which when optimized properly can result in a 3D reconstruction that accurately reproduces chamber walls. We go over the motivation for this project and the details of the optical model that simulated the chamber and traced the rays for the goodness-of-fit function.
- Publication:
-
American Astronomical Society Meeting Abstracts #229
- Pub Date:
- January 2017
- Bibcode:
- 2017AAS...22924803A