Measuring the deviation from the superposition principle in interference experiments
Abstract
The Feynman Path Integral formalism has long been used for calculations of probability amplitudes. Over the last few years, it has been extensively used to theoretically demonstrate that the usual application of the superposition principle in slit based interference experiments is often incorrect. This has caveat in both optics and quantum mechanics where it is often naively assumed that the boundary condition represented by slits opened individually is same as them being opened together. The correction term comes from exotic sub leading terms in the Path Integral which can be described by what are popularly called nonclassical paths. In this work, we report an experiment where we have a controllable parameter that can be varied in its contribution such that the effect due to these nonclassical paths can be increased or diminished at will. Thus, the reality of these nonclassical paths is brought forth in a classical experiment using microwaves, thereby proving that the boundary condition effect being investigated transcends the classicalquantum divide. We report the first measurement of a deviation (as big as $6\%$) from the superposition principle in the microwave domain using antennas as sources and detectors of the electromagnetic waves. We also show that our results can have potential applications in astronomy.
 Publication:

arXiv eprints
 Pub Date:
 October 2016
 arXiv:
 arXiv:1610.09143
 Bibcode:
 2016arXiv161009143R
 Keywords:

 Quantum Physics
 EPrint:
 Main text: 16 pages including Methods section, 13 figures, Supplementary material: 3 pages, 3 figures