Progression-free sets in Z_4^n are exponentially small
Abstract
We show that for integer $n>0$, any subset $A \subset Z_4^n$ free of three-term arithmetic progressions has size $|A| < 4^{c n}$, with an absolute constant $c \approx 0.926$.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2016
- DOI:
- arXiv:
- arXiv:1605.01506
- Bibcode:
- 2016arXiv160501506C
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Combinatorics
- E-Print:
- A vey minor improvement + simplification + correction