On the reality of broad iron L lines from the narrow line Seyfert 1 galaxies 1H0707-495 and IRAS 13224-3809
Abstract
We performed time resolved spectroscopy of 1H0707-495 and IRAS 13224-3809 using long XMM-Newton observations. These are strongly variable narrow line Seyfert 1 galaxies and show broad features around 1 keV that have been interpreted as relativistically broad Fe Lα lines. Such features are not clearly observed in other active galactic nuclei despite sometimes having high iron abundance required by the best fitted blurred reflection models. Given the importance of these lines, we explore whether the rapid variability of spectral parameters may introduce broad bumps/dips artificially in the time averaged spectrum, which may then be mistaken as broadened lines. We tested this hypothesis by performing time resolved spectroscopy using long (>100 ks) XMM-Newton observations and by dividing them into segments with typical exposures of a few ks. We extracted spectra from each such segment and modeled them using a two component phenomenological model consisting of a power law to represent the hard component and a black body to represent the soft emission. As expected, both the sources showed variations in the spectral parameters. Using these variation trends, we simulated model spectra for each segment and then co-added to get a combined simulated spectrum. In the simulated spectra, we found no broad features below 1 keV and in particular no deviation near 0.9 keV as seen in the real averaged spectra. This implies that the broad Fe Lα line that is seen in the spectra of these sources is not an artifact of the variation of spectral components and, hence, provides evidence that the line is indeed genuine.
- Publication:
-
Research in Astronomy and Astrophysics
- Pub Date:
- November 2016
- DOI:
- 10.1088/1674-4527/16/11/169
- Bibcode:
- 2016RAA....16..169K