Results from the first use of low radioactivity argon in a dark matter search
Abstract
Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).
- Publication:
-
Physical Review D
- Pub Date:
- April 2016
- DOI:
- 10.1103/PhysRevD.93.081101
- arXiv:
- arXiv:1510.00702
- Bibcode:
- 2016PhRvD..93h1101A
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - Instrumentation and Methods for Astrophysics;
- High Energy Physics - Experiment;
- Physics - Instrumentation and Detectors
- E-Print:
- Accepted by Phys. Rev. D