State flip at exceptional points in atomic spectra
Abstract
We study the behavior of nonadiabatic population transfer between resonances at an exceptional point in the spectrum of the hydrogen atom. It is known that, when the exceptional point is encircled, the system always ends up in the same state, independent of the initial occupation within the two-dimensional subspace spanned by the states coalescing at the exceptional point. We verify this behavior for a realistic quantum system, viz., the hydrogen atom in crossed electric and magnetic fields. It is also shown that the nonadiabatic hypothesis can be violated when resonances in the vicinity are taken into account. In addition, we study nonadiabatic population transfer in the case of a third-order exceptional point, in which three resonances are involved.
- Publication:
-
Physical Review A
- Pub Date:
- January 2016
- DOI:
- 10.1103/PhysRevA.93.013401
- arXiv:
- arXiv:1511.01382
- Bibcode:
- 2016PhRvA..93a3401M
- Keywords:
-
- Quantum Physics;
- Physics - Atomic Physics
- E-Print:
- 9 pages, 9 figures, one additional figure, minor additions in the text