Insights into functional and evolutionary analysis of carbaryl metabolic pathway from Pseudomonas sp. strain C5pp
Abstract
Carbaryl (1-naphthyl N-methylcarbamate) is a most widely used carbamate pesticide in the agriculture field. Soil isolate, Pseudomonas sp. strain C5pp mineralizes carbaryl via 1-naphthol, salicylate and gentisate, however the genetic organization and evolutionary events of acquisition and assembly of pathway have not yet been studied. The draft genome analysis of strain C5pp reveals that the carbaryl catabolic genes are organized into three putative operons, ‘upper’, ‘middle’ and ‘lower’. The sequence and functional analysis led to identification of new genes encoding: i) hitherto unidentified 1-naphthol 2-hydroxylase, sharing a common ancestry with 2,4-dichlorophenol monooxygenase; ii) carbaryl hydrolase, a member of a new family of esterase; and iii) 1,2-dihydroxy naphthalene dioxygenase, uncharacterized type-II extradiol dioxygenase. The ‘upper’ pathway genes were present as a part of a integron while the ‘middle’ and ‘lower’ pathway genes were present as two distinct class-I composite transposons. These findings suggest the role of horizontal gene transfer event(s) in the acquisition and evolution of the carbaryl degradation pathway in strain C5pp. The study presents an example of assembly of degradation pathway for carbaryl.
- Publication:
-
Scientific Reports
- Pub Date:
- December 2016
- DOI:
- 10.1038/srep38430
- Bibcode:
- 2016NatSR...638430T