Repeated quantum error correction on a continuously encoded qubit by real-time feedback
Abstract
Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-tolerant computations, it is essential that states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected logical qubit using a diamond quantum processor. We encode the logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements, and apply corrections by real-time feedback. The actively error-corrected qubit is robust against errors and encoded quantum superposition states are preserved beyond the natural dephasing time of the best physical qubit in the encoding. These results establish a powerful platform to investigate error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing.
- Publication:
-
Nature Communications
- Pub Date:
- May 2016
- DOI:
- 10.1038/ncomms11526
- arXiv:
- arXiv:1508.01388
- Bibcode:
- 2016NatCo...711526C
- Keywords:
-
- Quantum Physics;
- Condensed Matter - Mesoscale and Nanoscale Physics
- E-Print:
- Nat. Commun. 7, 11526 (2016)