V4743 Sgr, a magnetic nova?
Abstract
Two XMM-Newton observations of Nova V4743 Sgr (Nova Sgr 2002) were performed shortly after it returned to quiescence, 2 and 3.5 yr after the explosion. The X-ray light curves revealed a modulation with a frequency of ≃0.75 mHz, indicating that V4743 Sgr is most probably an intermediate polar (IP). The X-ray spectra have characteristics in common with known IPs, with a hard thermal plasma component that can be fitted only assuming a partially covering absorber. In 2004, the X-ray spectrum had also a supersoft blackbody-like component, whose temperature was close to that of the white dwarf (WD) in the supersoft X-ray phase following the outburst, but with flux by at least two orders of magnitude lower. In quiescent IPs, a soft X-ray flux component originates at times in the polar regions irradiated by an accretion column, but the supersoft component of V4743 Sgr disappeared in 2006, indicating a possible origin different from accretion. We suggest that it may have been due to an atmospheric temperature gradient on the WD surface, or to continuing localized thermonuclear burning at the bottom of the envelope, before complete turn-off. An optical spectrum obtained with Southern African Large Telescope (SALT) 11.5 yr after the outburst showed a prominent He II λ4686 line and the Bowen blend, which reveal a very hot region, but with peak temperature shifted to the ultraviolet range. V4743 Sgr is the third post-outburst nova and IP candidate showing a low-luminosity supersoft component in the X-ray flux a few years after the outburst.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- August 2016
- DOI:
- 10.1093/mnras/stw1199
- arXiv:
- arXiv:1606.00225
- Bibcode:
- 2016MNRAS.460.2744Z
- Keywords:
-
- stars: individual: V4743 Sgr;
- novae;
- cataclysmic variables;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 9 pages, 5 figures, accepted to MNRAS