Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization
Abstract
This paper, for the first time, reports the results of microwave sintering of two emerging biomaterials, magnesium phosphate and amorphous magnesium calcium phosphate. Beneficial aspects of successful microwave sintering of calcium phosphate are well documented in the literature. The motivation for this work derives from the absence of any publication of similar nature on magnesium phosphates, which are becoming important with the rapid rise in interest in biodegradable Mg-alloys. Starting off with amorphous calcium magnesium phosphate and magnesium phosphate, the resulting microwave sintered product is a biphasic mixture of whitlockite substituted with magnesium and magnesium phosphate. The influence of the extent of Mg substitution on the mechanical properties, microstructure, and sintering behavior of tricalcium phosphate was evaluated. The results showed that the addition of Mg (up to the 50% wt/wt in relation to Ca mass) in the precursor compound of magnesium calcium phosphate improved the kinetics of the densification process and enhanced hardness values.
- Publication:
-
Journal of Materials Research
- Pub Date:
- April 2016
- DOI:
- 10.1557/jmr.2016.84
- Bibcode:
- 2016JMatR..31..995B