Anisotropy in geometrically rough structure of ice prismatic plane interface during growth: Development of a modified six-site model of H2O and a molecular dynamics simulation
Abstract
This paper presents a modified version of the six-site model of H2O [H. Nada and J. P. J. M. van der Eerden, J. Chem. Phys. 118, 7401 (2003)]. Although the original six-site model was optimized by assuming the cut-off of the Coulomb interaction at an intermolecular distance of 10 Å, the modified model is optimized by using the Ewald method for estimating the Coulomb interaction. Molecular dynamics (MD) simulations of an ice-water interface suggest that the melting point of ice at 1 atm in the modified model is approximately 274.5 K, in good agreement with the real melting point of 273.15 K. MD simulations of bulk ice and water suggest that the modified model reproduces not only the structures and density curves of ice and water, but also the diffusion coefficient of water molecules in water near the melting point at 1 atm. Using the modified model, a large-scale MD simulation of the growth at an ice-water interface of the prismatic plane is performed to elucidate the anisotropy in the interface structure during growth. Simulation results indicate that the geometrical roughness of the ice growth front at the interface is greater in the c-axis direction than in the direction normal to the c-axis when it is analyzed along the axes parallel to the prismatic plane. In addition, during the growth at the interface, the transient appearance of specific crystallographic planes, such as a {20 2 ¯ 1 } pyramidal plane, occurs preferentially at the ice growth front. The effect of different ensembles with different simulation systems on the anisotropy in the interface structure is also investigated.
- Publication:
-
Journal of Chemical Physics
- Pub Date:
- December 2016
- DOI:
- Bibcode:
- 2016JChPh.145x4706N