A Step Towards the Characterization of SAR Mode Altimetry to Inform Hydrodynamic Models
Abstract
Inland water scenes are highly variable, both in space and time, which leads to a much broader range of radar signatures than ocean surfaces. This applies to both LRM and "SAR" mode (SARM) altimetry. Nevertheless the enhanced along-track resolution of SARM altimeters should help improve the accuracy and precision of inland water height measurements from satellite. The SHAPE project - Sentinel-3 Hydrologic Altimetry Processor prototypE - which is funded by ESA through the Scientific Exploitation of Operational Missions Programme Element (contract number 4000115205/15/I-BG) aims at preparing for the exploitation of Sentinel-3 data over the inland water domain. In order to define refine the L1B processor and the retrackers for alti-hydrology applications, we need to characterise the SARM Individual Echoes, Multi- Look Stacks as well as 20Hz waveforms over the inland water domain.This paper deals with the continuation of works presented in 2015 [Fabry et Bercher, Venice 2015b] [Fabry et Bercher, Frascati 2015a/c] where we introduced an automated technique to assess the water fraction within the Beam-Doppler limited footprint through its intersection area with a water mask. We hereby refine the utilisation of these water classes and run the classification on a wider dataset so as to improve the readout of the Range Integrated Power1 (RIP) parameters and the waveforms versus the Water Fraction.
- Publication:
-
Living Planet Symposium
- Pub Date:
- August 2016
- Bibcode:
- 2016ESASP.740E.110F