NEOCam: The Near-Earth Object Camera
Abstract
The Near-Earth Object Camera (NEOCam) is a Discovery mission in Phase A study designed to carry out a large-scale survey of the inner solar system's minor planets. Its primary science objectives are to understand the origins of the solar system's small bodies and the processes that evolved them into their present state. The mission will also characterize the impact hazard from near-Earth objects as well as rare populations such as Earth Trojans and interior-to-Earth objects. In the process, NEOCam can identify targets for future robotic or human exploration. Using a 50 cm telescope operating in two infrared wavelengths (4-5.2 and 6-10 um), the mission is expected to detect and characterize close to 100,000 NEOs and thousands of comets. By achieving high survey completeness in the main belt down to kilometer-scale objects, NEOCam-derived size and albedo distributions can be directly compared to those of the NEOs. The hypotheses that small, dark NEOs and comets are preferentially disrupted at low perihelia can be tested by searching for correlations between size, orbital elements, and albedos. NEOCam's Sun-Earth L1 Lagrange point halo orbit enables a large instantaneous field of regard with a view of low solar elongations, high data rates, and a cold thermal environment. Like its predecessor, WISE/NEOWISE, candidate minor planet detections will be rapidly disseminated to the community via the Minor Planet Center. NEOCam images, source databases, and tables of derived physical properties will be delivered to the community via NASA's Infrared Science Archive and PDS.
- Publication:
-
AAS/Division for Planetary Sciences Meeting Abstracts #48
- Pub Date:
- October 2016
- Bibcode:
- 2016DPS....4832701M