Cosmological Simulations of Early Black Hole Formation: Halo Mergers, Tidal Disruption, and the Conditions for Direct Collapse
Abstract
Gravitational collapse of a massive primordial gas cloud is thought to be a promising path for the formation of supermassive black holes in the early universe. We study conditions for the so-called direct collapse (DC) black hole formation in a fully cosmological context. We combine a semianalytic model of early galaxy formation with halo merger trees constructed from dark matter N-body simulations. We locate a total of 68 possible DC sites in a volume of 20 {h}-1 {Mpc} on a side. We then perform hydrodynamics simulations for 42 selected halos to study in detail the evolution of the massive clouds within them. We find only two successful cases where the gas clouds rapidly collapse to form stars. In the other cases, gravitational collapse is prevented by the tidal force exerted by a nearby massive halo, which otherwise should serve as a radiation source necessary for DC. Ram pressure stripping disturbs the cloud approaching the source. In many cases, a DC halo and its nearby light source halo merge before the onset of cloud collapse. When the DC halo is assembled through major mergers, the gas density increases rapidly to trigger gravitational instability. Based on our cosmological simulations, we conclude that the event rate of DC is an order of magnitude smaller than reported in previous studies, although the absolute rate is still poorly constrained. It is necessary to follow the dynamical evolution of a DC cloud and its nearby halo(s) in order to determine the critical radiation flux for DC.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- December 2016
- DOI:
- 10.3847/0004-637X/832/2/134
- arXiv:
- arXiv:1603.08923
- Bibcode:
- 2016ApJ...832..134C
- Keywords:
-
- early universe;
- galaxies: high-redshift;
- methods: numerical;
- stars: black holes;
- stars: Population III;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 22 pages, 22 figures, accepted for publication in ApJ