The Interaction of the Fermi Bubbles with the Milky Way’s Hot Gas Halo
Abstract
The Fermi bubbles are two lobes filled with non-thermal particles that emit gamma rays, extend ≈ 10 {{kpc}} vertically from the Galactic center, and formed from either nuclear star formation or accretion activity on Sgr A*. Simulations predict a range of shock strengths as the bubbles expand into the surrounding hot gas halo ({T}{halo}≈ 2× {10}6 K), but with significant uncertainties in the energetics, age, and thermal gas structure. The bubbles should contain thermal gas with temperatures between 106 and 108 K, with potential X-ray signatures. In this work, we constrain the bubbles’ thermal gas structure by modeling O vii and O viii emission line strengths from archival XMM-Newton and Suzaku data. Our emission model includes a hot thermal volume-filled bubble component cospatial with the gamma-ray region, and a shell of compressed material. We find that a bubble/shell model with n≈ 1× {10}-3 cm-3 and with log(T) ≈ 6.60-6.70 is consistent with the observed line intensities. In the framework of a continuous Galactic outflow, we infer a bubble expansion rate, age, and energy injection rate of {490}-77+230 km s-1, {4.3}-1.4+0.8 Myr, and {2.3}-0.9+5.1× {10}42 erg s-1. These estimates are consistent with the bubbles forming from a Sgr A* accretion event rather than from nuclear star formation.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- September 2016
- DOI:
- 10.3847/0004-637X/829/1/9
- arXiv:
- arXiv:1607.04906
- Bibcode:
- 2016ApJ...829....9M
- Keywords:
-
- Galaxy: center;
- Galaxy: halo;
- X-rays: diffuse background;
- X-rays: ISM;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- Accepted for publication in ApJ - 23 pages, 11 figures, 3 tables