Discovery of the Candidate Off-nuclear Ultrasoft Hyper-luminous X-Ray Source 3XMM J141711.1+522541
Abstract
We report the discovery of an off-nuclear ultrasoft hyper-luminous X-ray source candidate 3XMM J141711.1+522541 in the inactive S0 galaxy SDSS J141711.07+522540.8 (z = 0.41827, dL = 2.3 Gpc) in the Extended Groth Strip. It is located at a projected offset of ∼1.″0 (5.2 kpc) from the nucleus of the galaxy and was serendipitously detected in five XMM-Newton observations in 2000 July. Two observations have enough counts and can be fitted with a standard thermal disk with an apparent inner disk temperature {{kT}}{MCD}∼ 0.13 {{keV}} and a 0.28-14.2 keV unabsorbed luminosity LX ∼ 4 × 1043 erg s-1 in the source rest frame. The source was still detected in three Chandra observations in 2002 August, with similarly ultrasoft but fainter spectra (kTMCD ∼ 0.17 keV, LX ∼ 0.5 × 1043 erg s-1). It was not detected in later observations, including two by Chandra in 2005 October, one by XMM-Newton in 2014 January, and two by Chandra in 2014 September-October, implying a long-term flux variation factor of >14. Therefore the source could be a transient with an outburst in 2000-2002. It has a faint optical counterpart candidate, with apparent magnitudes of mF606W = 26.3 AB mag and mF814W = 25.5 AB mag in 2004 December (implying an absolute V-band magnitude of ∼-15.9 AB mag). We discuss various explanations for the source and find that it is best explained as a massive black hole (BH) embedded in the nucleus of a possibly stripped satellite galaxy, with the X-ray outburst due to tidal disruption of a surrounding star by the BH. The BH mass is ∼105 M⊙, assuming the peak X-ray luminosity at around the Eddington limit.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- April 2016
- DOI:
- 10.3847/0004-637X/821/1/25
- arXiv:
- arXiv:1603.00455
- Bibcode:
- 2016ApJ...821...25L
- Keywords:
-
- accretion;
- accretion disks;
- galaxies: individual: 3XMM J141711.1+522541;
- galaxies: nuclei;
- X-rays: galaxies;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 13 pages, 5 figures, accepted for publication in ApJ