Chorus Wave Energy Budget Analysis in the Earth's Radiation Belts
Abstract
Whistler-mode chorus emissions are important electromagnetic waves in the Earth's magnetosphere, where they continuously scatter and accelerate electrons of the outer radiation belt, controlling radiation hazards to satellites and astronauts. Here, we present an analysis of Van Allen Probes electric and magnetic field VLF waveform data, evaluating the wave energy budget, and show that a significant fraction of the energy corresponds to very oblique waves. Such waves, with a generally much smaller (up to 10 times) magnetic power than parallel waves, typically have comparable or even larger total energy. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts and also provide nonlinear effects due to wave-particle interaction through the Landau resonance due to the significant electric field component parallel to the background magnetic field.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMSM31A2471B
- Keywords:
-
- 6939 Magnetospheric physics;
- RADIO SCIENCEDE: 7845 Particle acceleration;
- SPACE PLASMA PHYSICSDE: 7867 Wave/particle interactions;
- SPACE PLASMA PHYSICSDE: 7959 Models;
- SPACE WEATHER