An Investigation of Hall Currents Associated with Tripolar Magnetic Fields During Magnetospheric Kelvin Helmholtz Waves
Abstract
Kinetic simulations and observations of magnetic reconnection suggest the Hall term of Ohm's Law is necessary for understanding fast reconnection in the Earth's magnetosphere. During high (>1) guide field plasma conditions in the solar wind and in Earth's magnetopause, tripolar variations in the guide magnetic field are often observed during current sheet crossings, and have been linked to reconnection Hall magnetic fields. Two proposed mechanisms for these tripolar variations are the presence of multiple nearby X-lines and magnetic island coalescence. We present results of an investigation into the structure of the electron currents supporting tripolar guide magnetic field variations during Kelvin-Helmholtz wave current sheet crossings using the Magnetosphere Multiscale (MMS) Mission, and compare with bipolar magnetic field structures and with kinetic simulations to understand how these tripolar structures may be used as tracers for magnetic islands.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMSM21A2452S
- Keywords:
-
- 2723 Magnetic reconnection;
- MAGNETOSPHERIC PHYSICSDE: 2724 Magnetopause and boundary layers;
- MAGNETOSPHERIC PHYSICSDE: 2728 Magnetosheath;
- MAGNETOSPHERIC PHYSICSDE: 2784 Solar wind/magnetosphere interactions;
- MAGNETOSPHERIC PHYSICS