Compressional ULF Wave Modulation of Energetic Particles in the Inner Magnetosphere
Abstract
We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 - 1400 UT on February 19th, 2014. During this event the spacecraft are in the dayside magnetosphere at L* 5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of pi/2 pitch angle particles are observed to attain maximum values simultaneously with the ULF compressional magnetic field component reaching a minimum. We use peak-to-valley ratios to quantify the strength of the modulation effect, finding that the modulation is larger at higher energies than at lower energies. It is shown that the compressional wave modulation of the particle distribution is due to the mirror effect, which can trap relativistic electrons efficiently for energies up to 2.85 MeV, and trap protons up to 600 keV. Larger peak-to-valley ratios at higher energies also attributed to the mirror effect. Finally, we suggest that protons with energies higher than 636.18 keV can not be trapped by the compressional ULF wave efficiently due to the finite Larmor radius effect.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMSM13B2199L
- Keywords:
-
- 2109 Discontinuities;
- INTERPLANETARY PHYSICSDE: 2139 Interplanetary shocks;
- INTERPLANETARY PHYSICSDE: 2740 Magnetospheric configuration and dynamics;
- MAGNETOSPHERIC PHYSICSDE: 2784 Solar wind/magnetosphere interactions;
- MAGNETOSPHERIC PHYSICS