Global variations in Magnetosphere-Ionosphere system due to Sudden Impulses under different IMF By conditions
Abstract
A sudden impulse (SI) event is a rapid increase in solar wind dynamic pressure, which compresses the Earth's magnetosphere from the dayside and travels towards the Earth's tail. During the SI events, compression front reconfigures the Magnetosphere-Ionosphere (MI) current systems. This compression launches fast magnetosonic waves that carry the SI through magnetosphere and Alfven waves that enhance the field-aligned currents (FACs) at high-latitudes. FAC systems can be measured by Active Magnetosphere and Polar Electrodynamics Response Experiment (AMPERE). The propagation front also creates travelling convection vortices (TCVs) in the ionosphere that map to the equatorial flank regions of the Earth's magnetosphere. The TCVs then move from dayside to the nightside ionosphere. To understand these SI-driven disturbances globally, we use the University of Michigan Space Weather Modeling Framework (SWMF) with Global Magnetosphere (GM), Inner Magnetosphere (IM) and Ionosphere (IE) modules. We study the changes in the FAC systems, which link ionospheric and magnetospheric propagating disturbances under different IMF By conditions and trace the ionospheric disturbances to magnetospheric system to better understand the connection between two systems. As shown by previous studies, IMF By can cause asymmetries in the magnetic perturbations measured by the ground magnetometers. By using model results we determine the global latitudinal and longitudinal dependencies of the SI signatures on the ground. We also use the SWMF results to drive the Global Ionosphere Thermosphere Model (GITM) to reveal how the Ionosphere-Thermosphere system is affected by the SI propagation. Comparisons are carried out between the IE model output and high latitude convection patterns from Super Dual Auroral Radar Network (SuperDARN) measurements and SuperMAG ground magnetic field perturbations. In closing we have modeled the field-aligned currents, ionospheric convection patterns, temperature and density profiles to explore the global coupling of the ionosphere to magnetosphere during SI events with different By orientation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMSM13B2191O
- Keywords:
-
- 2109 Discontinuities;
- INTERPLANETARY PHYSICSDE: 2139 Interplanetary shocks;
- INTERPLANETARY PHYSICSDE: 2740 Magnetospheric configuration and dynamics;
- MAGNETOSPHERIC PHYSICSDE: 2784 Solar wind/magnetosphere interactions;
- MAGNETOSPHERIC PHYSICS