Instabilities Driven by a Pickup Ion Velocity Ring in the Heliosphere: Linear Theory and PIC Simulations
Abstract
Linear dispersion analyses and two-dimensional electromagnetic particle-in-cell simulations are performed to study the kinetic plasma instabilities driven by a proton velocity ring with parameters (e.g., ring speed 10vA where vA is the Alfvén speed) relevant to the pickup ions in the distant solar wind. The results show that, besides the commonly expected Alfvén cyclotron instability with maximum growth at parallel propagation, mirror mode and ion Bernstein modes at oblique propagations are also unstable. While the enhanced waves from the Alfvén cyclotron instability mainly lead to pitch angle scattering of the ring protons, the other modes scatter the protons differently. The results also have implications for the pickup ions in the outer heliosheath.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMSH41C2545L
- Keywords:
-
- 2104 Cosmic rays;
- INTERPLANETARY PHYSICSDE: 2124 Heliopause and solar wind termination;
- INTERPLANETARY PHYSICSDE: 2126 Heliosphere/interstellar medium interactions;
- INTERPLANETARY PHYSICSDE: 7835 Magnetic reconnection;
- SPACE PLASMA PHYSICS