Compressible MHD Turbulence in the Slow Solar Wind: Energy Transfer Rate
Abstract
The role of compressible fluctuations in the MHD turbulence is investigated using direct numerical simulations and in-situ spacecraft in the solar wind. A focus is put on verifying the exact third-order law derived for compressible isothermal turbulence by Banerjee and Galtier, 2013. The numerical simulations use a 3D compressible MHD code in the isothermal limit ( =1) with low sonic Mach numbers (Ms<1). The main goal is to evaluate the relative importance of the new flux and source terms involved in the derived law. Direct comparison with spacecraft observations from the Themis spacecraft in the fast and slow solar wind will be made.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMSH21C2538S
- Keywords:
-
- 2159 Plasma waves and turbulence;
- INTERPLANETARY PHYSICSDE: 2723 Magnetic reconnection;
- MAGNETOSPHERIC PHYSICSDE: 7846 Plasma energization;
- SPACE PLASMA PHYSICSDE: 7863 Turbulence;
- SPACE PLASMA PHYSICS