Feasibility of geophysical methods as a tool to detect urban subsurface cavity
Abstract
Urban road collapse problem become a social issue in Korea these days. Underground cavity cannot be cured by itself, we need to detect existing underground cavity before road collapse. We should consider cost, reliability, availability, skill requirement for field work and interpretation procedure in selecting detecting method because it's huge area and very long length to complete. We constructed a real-scale ground model for this purpose. Its size is about 15m*8m*3m (L*W*D) and sewer pipes are buried at the depth of 1.2m. We modeled upward moving or enlargement of underground cavity by digging the ground through the hole of sewer pipe inside. There are two or three steps having different cavity size and depth. We performed all five methods on the ground model to monitor ground collapse and detect underground cavity at each step. The first one is GPR method, which is very popular for this kind of project. GPR provided very good images showing underground cavity well at each step. DC resistivity survey is also selected because it is a common tool to locate underground anomaly. It provided the images showing underground cavity, but field setup is not favorable for the project. The third method is micro gravity method which can differentiate cavity zone from gravity distribution. Micro Gravity gave smaller g values around the cavity compared to normal condition, but it takes very long time to perform. The fourth method is thermal image. The temperature of the ground surface on the cavity will be different from the other area. We used multi-copter for rapid thermal imaging and we could pick the area of underground cavity from the aerial thermal image of ground surface. The last method we applied is RFID/magnetic survey. When the ground is collapsed around the buried RFID/magnetic tag in depth, tag will be moved downward. We can know the ground collapse through checking tag detecting condition. We could pick the area of ground collapse easily. When we compared each method from a variety of views, we could check GPR method, aerial thermal imaging method and RFID/magnetic survey show better performance as a tool to detect subsurface cavity.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMNS33B1973B
- Keywords:
-
- 0994 Instruments and techniques;
- EXPLORATION GEOPHYSICSDE: 0999 General or miscellaneous;
- EXPLORATION GEOPHYSICSDE: 1835 Hydrogeophysics;
- HYDROLOGY