High resolution three-dimensional magnetization mapping in Tokachidake Volcano using low altitude airborne magnetic survey data
Abstract
Tokachidake Volcano, central Hokkaido, Japan erupted in 1926, 1962 and 1988-1989 in the 20th century from the central part. In recent years, expansions of the edifice of the volcano at shallow depth and increases of the volcanic smoke in the Taisho crater were observed (Meteorological Agency of Japan, 2014). Magnetic changes were observed at the 62-2 crater by repeated magnetic measurements in 2008-2009, implying a demagnetization beneath the crater (Hashimoto at al., 2010). Moreover, a very low resistivity part was found right under the 62-2 crater from an AMT survey (Yamaya et al., 2010). However, since the station numbers of the survey are limited, the area coverage is not sufficient. In this study, we have re-analyzed high-resolution aeromagnetic data to delineate the three-dimensional magnetic structure of the volcano to understand the nature of other craters.A low altitude airborne magnetic survey was conducted in 2014 mainly over the active areas of the volcano by the Ministry of Land, Infrastructure, Transport and Tourism to manage land slide risk in the volcano. The survey was flown at an altitude of 60 m above ground by a helicopter with a Cesium magnetometer in the towed-bird 30m below the helicopter. The low altitude survey enables us to delineate the detailed magnetic structure. We calculated magnetic anomaly distribution on a smooth surface assuming equivalent anomalies below the observation surface. Then the 3D magnetic imaging method (Nakatsuka and Okuma, 2014) was applied to the magnetic anomalies to reveal the three-dimensional magnetic structure.As a result, magnetization highs were seen beneath the Ground crater, Suribachi crater and Kitamuki crater. This implies that magmatic activity occurred in the past at these craters. These magma should have already solidified and acquired strong remanent magnetization. Relative magnetization lows were seen beneath the 62-2 crater and the Taisho crater where fumarolic activity is active. However a magnetization high was seen beneath the Nukkakushi crater where fumarolic activity and hydrothermal alteration had been observed on the ground. Further studies on this interesting distribution is necessary.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMNS33A1951I
- Keywords:
-
- 0910 Data processing;
- EXPLORATION GEOPHYSICSDE: 0994 Instruments and techniques;
- EXPLORATION GEOPHYSICSDE: 1829 Groundwater hydrology;
- HYDROLOGYDE: 4333 Disaster risk analysis and assessment;
- NATURAL HAZARDS