Sedimentary Environment Changes between Tsunami Events in the Central Fukushima Prefecture, Japan
Abstract
Many tsunami deposits were found in the Tohoku region, Japan from recent and past tsunamis. Study of tsunami deposits is particularly important in the central to southern Fukushima Prefecture, which is the southern limit of the distributions of tsunami deposits of the 869 Jogan, 1454 Kyotoku and 1611 Keicho-Sanriku earthquakes. Previous studies reported that there were at least five tsunami deposits (EV1-EV5) consisted of fine-middle sand and the sedimentary environment was inner-bay or lagoon for the past 2,600 years (Goto and Aoyama, 2005; JpGU, Oikawa et al., 2011; JpGU, Oota and Hoyanagi, 2014; GSJ, Kusumoto et al., 2016; JpGU). However, the sedimentary environment changes between or across historical tsunamis have not been examined. In this study, we try to estimate the sedimentary environment changes using Total Organic Carbon (TOC), Total Nitrogen (TN) concentrations and organic Carbon-to-Nitrogen (C/N) ratio. We took 13 geological core samples of length 2.0-2.5 m at 11 locations 0.6-2.7 km from the coast. The deposits consisted of silt and massive sand with graded beddings, laminas and rip-up clasts. For samples, we performed grain-size analysis, radiocarbon age measurement and CN elemental analysis. We found three interesting characteristics. First, grain size of ordinary deposits between EV4 and EV5 tend to fine upward slightly. It suggests that tidal current became gradually weak. Second, C/N ratio is about 5-10 at every depth, meaning that organic material source was phytoplankton or zooplankton (Müller, 1977; GCA). Finally, TOC and TN concentrations slowly increase between EV4 and EV5, and they rapidly decrease across EV3 and EV4. Their slow increases correspond to sedimentary environment change from anaerobic to aerobic, whereas rapid decreases correspond to sedimentary environment change from aerobic to anaerobic. These characteristics might indicate development of sand bar between tsunami events and sudden collapse of sand bar by historical tsunamis.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMNH43B1837K
- Keywords:
-
- 3225 Numerical approximations and analysis;
- MATHEMATICAL GEOPHYSICSDE: 4332 Disaster resilience;
- NATURAL HAZARDSDE: 4341 Early warning systems;
- NATURAL HAZARDSDE: 4564 Tsunamis and storm surges;
- OCEANOGRAPHY: PHYSICAL