Extending the Confrontation of Weather and Climate Models from Soil Moisture to Surface Flux Data
Abstract
The atmosphere and land components of weather and climate models are typically developed separately and coupled as a last step before new model versions are released. Separate testing of land surface models (LSMs) and atmospheric models is often quite extensive in the development phase, but validation of coupled land-atmosphere behavior is often minimal if performed at all. This is partly because of this piecemeal model development approach and partly because the necessary in situ data to confront coupled land-atmosphere models (LAMs) has been meager until quite recently. Over the past 10-20 years there has been a growing number of networks of measurements of land surface states, surface fluxes, radiation and near-surface meteorology, although they have been largely uncoordinated and frequently incomplete across the range of variables necessary to validate LAMs. We extend recent work "confronting" a variety of LSMs and LAMs with in situ observations of soil moisture from cross-standardized networks to comparisons with measurements of surface latent and sensible heat fluxes at FLUXNET sites in a variety of climate regimes around the world. The motivation is to determine how well LSMs represent observed statistics of variability and co-variability, how much models differ from one another, and how those statistics change when the LSMs are coupled to atmospheric models. Furthermore, comparisons are made to several LAMs in both open-loop (free running) and reanalysis configurations. This shows to what extent data assimilation can constrain the processes involved in flux variability, and helps illuminate model development pathways to improve coupled land-atmosphere interactions in weather and climate models.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMNG13A1692D
- Keywords:
-
- 3315 Data assimilation;
- ATMOSPHERIC PROCESSES