Multi-scale image segmentation and numerical modeling in carbonate rocks
Abstract
Numerical methods based on computational simulations can be an important tool in estimating physical properties of rocks. These can complement experimental results, especially when time constraints and sample availability are a problem. However, computational models created at different scales can yield conflicting results with respect to the physical laboratory. This problem is exacerbated in carbonate rocks due to their heterogeneity at all scales. We developed a multi-scale approach performing segmentation of the rock images and numerical modeling across several scales, accounting for those heterogeneities. As a first step, we measured the porosity and the elastic properties of a group of carbonate samples with varying micrite content. Then, samples were imaged by Scanning Electron Microscope (SEM) as well as optical microscope at different magnifications. We applied three different image segmentation techniques to create numerical models from the SEM images and performed numerical simulations of the elastic wave-equation. Our results show that a multi-scale approach can efficiently account for micro-porosities in tight micrite-supported samples, yielding acoustic velocities comparable to those obtained experimentally. Nevertheless, in high-porosity samples characterized by larger grain/micrite ratio, results show that SEM scale images tend to overestimate velocities, mostly due to their inability to capture macro- and/or intragranular- porosity. This suggests that, for high-porosity carbonate samples, optical microscope images would be more suited for numerical simulations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMMR13A2378A
- Keywords:
-
- 3909 Elasticity and anelasticity;
- MINERAL PHYSICSDE: 3954 X-ray;
- neutron;
- and electron spectroscopy and diffraction;
- MINERAL PHYSICSDE: 3620 Mineral and crystal chemistry;
- MINERALOGY AND PETROLOGYDE: 3694 Instruments and techniques;
- MINERALOGY AND PETROLOGY