Preliminary study of subsurface temperature estimation by analyzing temperature dependent geo-electromagnetic conductivity models
Abstract
Estimation of deep temperature is significant procedure for exploration, development and sustainable use of geothermal resources in the geothermal area. For estimating subsurface temperature, there have been suggested many techniques for indirect geothermometers, such as mineral geothermometer, hydrochemical geothermometer, isotropic geothermometer, electromagnetic (EM) geothermometer and so forth. In this study, we have tested the feasibility of EM geothermometer using integrated frameworks of geothermal and geo-electromagnetic models. For this purpose, we have developed geothermal temperature model together with EM model based on common earth model, which satisfies all observed geoscientific data set including surface geology, structural geology, well log data, and geophysical data. We develop a series of plugin modules for integration of geo-electromagnetic modeling and inversion algorithms on a common geological modeling platform. The subsurface temperature with time are modeled by solving heat transfer equations using finite element method (FEM). The temperature dependent conductivity model are obtained by the temperature-conductivity relations to perform geo-electromagnetic modeling, such as magnetotelluric to analyze temperature model from EM data.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMGP51A1362L
- Keywords:
-
- 0644 Numerical methods;
- ELECTROMAGNETICSDE: 1515 Geomagnetic induction;
- GEOMAGNETISM AND PALEOMAGNETISMDE: 3006 Marine electromagnetics;
- MARINE GEOLOGY AND GEOPHYSICSDE: 3914 Electrical properties;
- MINERAL PHYSICS