Estimating Regional and National-Scale Greenhouse Gas Emissions in the Agriculture, Forestry, and Other Land Use (AFOLU) Sector using the `Agricultural and Land Use (ALU) Tool'
Abstract
The Intergovernmental Panel on Climate Change (IPCC) provides methods and guidance for estimating anthropogenic greenhouse gas emissions for reporting to the United Nations Framework Convention on Climate Change. The methods are comprehensive and require extensive data compilation, management, aggregation, documentation and calculations of source and sink categories to achieve robust emissions estimates. IPCC Guidelines describe three estimation tiers that require increasing levels of country-specific data and method complexity. Use of higher tiers should improve overall accuracy and reduce uncertainty in estimates. The AFOLU sector represents a complex set of methods for estimating greenhouse gas emissions and carbon sinks. Major AFOLU emissions and sinks include carbon dioxide (CO2) from carbon stock change in biomass, dead organic matter and soils, urea or lime application to soils, and oxidation of carbon in drained organic soils; nitrous oxide (N2O) and methane (CH4) emissions from livestock management and biomass burning; N2O from organic amendments and fertilizer application to soils, and CH4 emissions from rice cultivation. To assist inventory compilers with calculating AFOLU-sector estimates, the Agriculture and Land Use Greenhouse Gas Inventory Tool (ALU) was designed to implement Tier 1 and 2 methods using IPCC Good Practice Guidance. It guides the compiler through activity data entry, emission factor assignment, and emissions calculations while carefully maintaining data integrity. ALU also provides IPCC defaults and can estimate uncertainty. ALU was designed to simplify the AFOLU inventory compilation process at regional or national scales, disaggregating the process into a series of steps reduces the potential for errors in the compilation process. An example application has been developed using ALU to estimate methane emissions from rice production in the United States.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMGC43A1137S
- Keywords:
-
- 0428 Carbon cycling;
- BIOGEOSCIENCESDE: 0434 Data sets;
- BIOGEOSCIENCESDE: 1630 Impacts of global change;
- GLOBAL CHANGEDE: 1980 Spatial analysis and representation;
- INFORMATICS