Spatial Relationships between Biomass Burning and Land Use / Land Cover Dynamics in Northern Sub-Saharan Africa
Abstract
Biomass burning (BB) is an extensive and persistent phenomenon across the world, and is a result of either natural (via lightning strikes) or anthropogenic processes, depending on the location. In Northern Sub-Saharan Africa (NSSA), where access to affordable modern farming equipment is extremely limited, agricultural practices dominate and BB is completely anthropogenic for all practical purposes, resulting in NSSA consistently contributing 15-20% of the total global annual emission of particulate matter from fires, according to estimates from version 1.0 of the Fire Energetics and Emissions Research BB emissions inventory (FEERv1.0, http://feer.gsfc.nasa.gov/data/emissions/). The FEERv1.0 algorithm uses a land cover type (LCT) product at either 0.5° or 0.1° resolutions for the conversion of total particulate matter estimates to various other smoke constituents. Due to the fact that fires are closely associated with land cover types, it became apparent that a fire-prone land cover type product at those spatial resolutions were needed, resulting in the FEERv1 BB-LCT product (http://feer.gsfc.nasa.gov/data/landcover/). In version 2 of the product, it was found that 6% of all grid cells with partial or full land cover in the original 0.5° LCT product is reclassified when considering BB practices. In NSSA, we see that the differences fall mainly along the borders between major regions of different LCT. Roughly speaking, fires along the cropland/savanna and savanna/forest borders in NSSA are mostly from from savanna burning. An in-depth analysis of the spatial extent and variability of fires and land cover in NSSA reveals that within the last one-and-a-half decades, the maximum fire activity occurred in the 2006/07 fire season and has been decreasing ever since. Interestingly, despite this decrease in fire activity, we observe a continuing increase in land cover conversion to cropland over the same time period at a rate of 0.3%/yr, which is equal to ≈37,500 km2/yr, or about 9 million new farms each year (assuming a farm size of one acre.) Attempts to understand this relationship are ongoing, and will also be summarized.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMGC41B1092E
- Keywords:
-
- 0426 Biosphere/atmosphere interactions;
- BIOGEOSCIENCESDE: 9305 Africa;
- GEOGRAPHIC LOCATIONDE: 1616 Climate variability;
- GLOBAL CHANGEDE: 1878 Water/energy interactions;
- HYDROLOGY