Calcite Dissolution Kinetics
Abstract
A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations <=0.04 g/L) to enhance the dissolution rate at low degrees of undersaturation by >500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral composition and surface area, solution carbonate chemistry, temperature and pressure are factors the impact carbonate dissolution rates in natural settings. We suggest that these parameters be considered in CO2 mitigation strategies.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMGC23C1249B
- Keywords:
-
- 0428 Carbon cycling;
- BIOGEOSCIENCESDE: 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGEDE: 4806 Carbon cycling;
- OCEANOGRAPHY: BIOLOGICAL AND CHEMICALDE: 6620 Science policy;
- PUBLIC ISSUES