Monitoring Phenology of Coastal Marshes in Louisiana using the Landsat Archive
Abstract
Coastal marshes are important sinks for blue carbon—carbon sequestered by coastal and marine ecosystems. Remote sensing phenology of the marshes is a good indicator for their ability to sequester carbon, which, however, is seldom addressed in the literature. This study aims to better understand phenology of coastal marshes in Louisiana using NDVI derived from a compilation the Landsat TM, ETM+, and OLI archive (30 m resolution) since 1984 to present. The environmental variables (i.e. annual temperature, sea level, and atmospheric CO2 concentration) of the study area all increased significantly overtime, showing that the study area is subject to climate change. However, marsh phenological parameters, including its peak NDVI, show no significant trend over time. This finding contrasts with the reported increase in summer photosynthetic activity of vegetation in the Northern Hemisphere, which is attributed to the increase in global temperature and atmospheric CO2 concentration. Such differences might be due to marsh physiological characteristics and the local environmental alterations. Coastal marshes in Louisiana contain many C4 species. The C4 photosynthesis pathway is less responsive to atmospheric CO2 concentration compared to the C3 photosynthesis. Coastal marshes thus respond to the elevated atmospheric CO2 differently compared to other ecosystems at middle to higher latitudes in the Northern Hemisphere. Another possible reason is that, while benefiting from the increased atmospheric CO2, coastal marshes are also undergoing significant stresses caused by sea level rise (e.g. submergence, and storm-induced floods and surges), which can offset the positive effects resulted from the increased temperature and atmospheric CO2 on photosynthesis. Our results suggest that coastal marshes might respond to climate change much differently from other ecosystems, but further investigation is required in order to better protect the ecosystem and its carbon storage under the changing climate.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMGC11D1162M
- Keywords:
-
- 0410 Biodiversity;
- BIOGEOSCIENCESDE: 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCESDE: 1630 Impacts of global change;
- GLOBAL CHANGEDE: 1640 Remote sensing;
- GLOBAL CHANGE