Exhumation Reconstruction of the Xiangcheng Area, SE Tibetan Plateau. Implication on the Evolution of the Yangtze River in the Cenozoic.
Abstract
Geodynamic processes associated with timing of river incision and river network reorganization on the Tibetan plateau margins remain controversial. In particular, hydrographic network modifications in SE Tibet have been interpreted as related with regional-scale uplift or fault motion. The paleocourse of the upper Yangtze river (Jinsha Sha) and the timing of the establishment of its modern course are highly debated, leading to conflicting models of the plateau evolution. For example, estimated ages for the formation of the Yangtze first bend (where the river shifts from flowing southward to northward) range from the Eocene to the Pliocene. River incision can be reconstructed using low-temperature thermochronometry. However, the lack of suitable rocks along the main riverbed of the Yangtze makes it challenging. To address this problem, we perform a local study of the Xiangcheng area, located in Sichuan, about 150 km upstream of the first bend and drained by tributaries of the upper Yangtze. We combine a tectono-geomorphic analysis to a reconstruction of exhumation rates using (U-Th-Sm)/He thermochronometry. The study area is characterized by the NW-SE trending, active left-lateral Xiangcheng fault, which is attested by crustal-depth seismic activity. Importantly, the courses of two tributaries of the Yangtze are deflected along the Xiangcheng fault, suggesting that the fault partly controls the evolution of the upper Yangtze course. Locally, the fault also exhibits triangular facets, suggesting normal motion probably related to the fault segmentation. Granite samples from the Xiangcheng pluton were collected along three altitudinal profiles and analyzed using zircon and apatite (U-Th-Sm)/He thermochronometry. We will discuss the results and their implications on exhumation and on the Yangtze river history during the Cenozoic.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMEP53B0938G
- Keywords:
-
- 1824 Geomorphology: general;
- HYDROLOGYDE: 1862 Sediment transport;
- HYDROLOGYDE: 8020 Mechanics;
- theory;
- and modeling;
- STRUCTURAL GEOLOGYDE: 8175 Tectonics and landscape evolution;
- TECTONOPHYSICS