How rivers remember: The impacts of prior stress history on grain scale topography and bedload transport
Abstract
Memory is preserved in rivers through the sorting and arrangement of grains on their beds, which reflect previous flow conditions. Manifestations of this phenomenon include observed hysteresis in bedload rating curves (e.g., Moog and Whiting, 1998; Reid et al., 1985) and correlations between the stage at the start of a transport event and the stage at the end of transport during a previous event (Turowski et al., 2011). This observed history dependence represents a key difficulty in the accurate prediction of bedload transport rates. To begin to systematically explore these memory effects on fluvial bedload transport, we experimentally examined how a gravel bed river responds to variations in prior stress history. Specifically, we compare the response of the grain-scale topography of a gravel riverbed to both below and above threshold flow conditions. We find that under low flow, when no sediment transport occurs, the bed compacts as the highest protruding grains pivot into low elevation pockets. This reorganization appears to occur logarithmically with low flow duration, making it analogous to compaction observed in dry granular flows subjected to agitation. The amount of prior compaction affects bedload transport rates at the onset of above threshold flow, with more compact beds yielding less bedload flux. In contrast, we find that under sediment-transporting flows, the bed dilates because grains are re-deposited in relatively precarious positions. During the same applied transport flow, we observe that the most pronounced dilation occurs when the initial bed is the most compact, suggesting that the potential for dilation is related to the degree of previous compaction. These observations highlight that a gravel bed experiences two different behaviors, compaction under low shear stresses, and dilation under high, sediment transporting, shear stresses. This observation is consistent with previous studies on the compaction and dilation of granular media, as well as flume experiments conducted using glass beads. Further, this study highlights the varying response of grain-scale topography and bedload transport rates to prior flow and bed conditions, demonstrating history dependence in fluvial systems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMEP23D..03M
- Keywords:
-
- 1847 Modeling;
- HYDROLOGYDE: 1862 Sediment transport;
- HYDROLOGYDE: 4430 Complex systems;
- NONLINEAR GEOPHYSICS