Assessment of Differential Uplift Along South Java, Indonesia from Terrace Elevations Mapped with Structure from Motion Photogrammetry
Abstract
Assessment of Differential Uplift Along South Java, Indonesia from Terrace Elevations Mapped with Structure from Motion Photogrammetry Jeremy Andreini, Michael Bunds, Ronald Harris, Eko Yulianto, Carolus Prasetyadi, Daniel Horns, Purna Putra Is differential uplift occurring on the south coast of Java? Java is on the southern edge of the Sunda plate, above the subducting Indo-Australian plate. Its south coast is 300 km north of the Java Trench and south of the volcanic arc that runs the length of Java. We are investigating relations between marine terraces and convergence, normal faulting associated with tectonically induced basin subsidence, eustatic sea level change, and variations in sediment supply from volcanic activity. Exposed bedrock along the coast includes upper Miocene basinal limestone, and localized exposure of underlying Miocene reef deposits and Oligo-miocene volcanic basement. Differential uplift in the past is implied by north-south trending horst-like ridges of Miocene reef sediment and volcanic basement that have been exhumed from greater depth than adjacent upper Miocene strata. We utilized Quaternary terrace elevations at four locations (Pangamalang, Pangandaran, Karanghawu, and Pacitan). Elevations were measured using traverses with handheld GPS units, profiles made with RTK GPS, and digital surface models (DSMs).The DSMs have 5 cm pixels and were constructed using structure-from-motion (SfM) software to process photos collected with quadcopters equipped with a 24 Mpixel Sony A5100 camera; their vertical RMS error relative to checkpoints measured on bare ground is 6 cm. SfM processing was done in the field with a specially built portable workstation. Four sets of terraces (T) with the following elevations were identified: T1 0-.5 m, T2 2 m, T3 17 m, T4 22 m. We interpret T1 to be the modern wave-cut platform, T2 to represent Holocene uplift of a Holocene terrace or possibly modern deposition, T3 to result from Marine Isotope Stage 5e. T4 occurs at every location except Pangamalang at the western tip of south Java. These results suggest late Quaternary uplift, and the 17 m elevation of T3 indicates an uplift rate of 0.17 mm/yr.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMEP21D0911A
- Keywords:
-
- 0933 Remote sensing;
- EXPLORATION GEOPHYSICSDE: 1625 Geomorphology and weathering;
- GLOBAL CHANGEDE: 1694 Instruments and techniques;
- GLOBAL CHANGEDE: 4337 Remote sensing and disasters;
- NATURAL HAZARDS