Bulk and export production fluxes from sediment traps in the Gulf of Aqaba, north Red Sea
Abstract
Real time observations of the dynamics between dust input, primary production, and export production in deep oligotrophic waters are extremely rare. This is especially true in the context of the direct response and lag time between nutrient supply (e.g., dust), the oceanic biogeochemical response and the signal transfer from the water to sedimentary record. Here, we present the first direct measurments of bulk and export production fluxes in the deep oligotrophic Gulf of Aqaba (GOA), northern Red Sea, located between the hyper-arid Sahara and Arabia Deserts. This study is based on a coupled sediment trap array that provides daily- and monthly- resolution since January 2014. This coupled configuration allows for a unique collection of marine particulates, whereby the annual and seasonal patterns can be evaluated in the context of discrete (daily-timescale) events such as abrupt dust storms, floods and biological blooms. The marine organic C and N fluxes range annually between 0.02-0.25 and 0.001-0.1 g d-1 m-2, respectively. Both show a sharp decay with depth, corresponding to the "Martin curve" (Martin et al., 1987, Deep-Sea Research, 34, 267-285). Importantly, the daily-resolution sampling provides insights to the seasonal increase in export production during the winter and early spring. Rather than a smooth seasonal cycle, this increase is driven by only very few short events, lasting no more than a few days, during which export production increases by an order of magnitude above the baseline. Yet, the nature of these export production "spikes" is non-unique because they reflect different "trigger" events such as dust storms or water column mixing. Accordingly, we present a quantitative evaluation of the observations in the context of coeval dust flux records and the physical and chemical configuration of the GOA over the time of sampling period, and present and quantitative mass balance of particle fluxes in this deep yet land-locked marine setting.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMEP21B0874T
- Keywords:
-
- 1902 Community modeling frameworks;
- INFORMATICSDE: 3022 Marine sediments: processes and transport;
- MARINE GEOLOGY AND GEOPHYSICSDE: 4217 Coastal processes;
- OCEANOGRAPHY: GENERALDE: 4235 Estuarine processes;
- OCEANOGRAPHY: GENERAL