A 3-D Non-hydrostatic Numerical Study of Frontal Structures and Their Surface Signatures in Estuaries
Abstract
The 3D nonhydrostatic surface- and terrain-following coastal model, NHwave, has been used to study shear instabilities and large coherent structures in estuaries during buoyant ebb flows and it was demonstrated that such modeling strategy is effective in providing the relationships between surface signatures and water column processes. In this study, NHwave is further used to help the understanding of the complex flow patterns and turbulent coherent structures during the flood condition in the Mouth of Columbia River (MCR). X-band marine radar imagery indicates strong surface velocity divergence at the MCR, which is associated with a landward-migrating, bottom-hopping saline current according to limited in-situ sensor data. We are able to demonstrate that NHwave can reproduce the strong surface velocity divergence during flood of MCR. The frontal zone of the modeled bottom-hopping density current can induce intense surface velocity divergence, which is of similar structure and magnitude to the observed radar signal. However, the numerical resolution is not sufficient to resolve shear instabilities due to the large domain size in the two horizontal directions in MCR. A detailed high-resolution simulation of a saline density current in an idealized channel with an internal Froude number and Reynolds number similar to the salt water intrusion at MCR is further carried out to understand the role of coherent structures in the frontal zone in determining the surface signatures and turbulent mixing.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMEP21B0870Z
- Keywords:
-
- 1902 Community modeling frameworks;
- INFORMATICSDE: 3022 Marine sediments: processes and transport;
- MARINE GEOLOGY AND GEOPHYSICSDE: 4217 Coastal processes;
- OCEANOGRAPHY: GENERALDE: 4235 Estuarine processes;
- OCEANOGRAPHY: GENERAL