Implications of Grainfall for Avalanches and Barchan Dune Morphodynamics
Abstract
Sediment accumulation on aeolian dunes is predominately though avalanching (or grainflow). This grainflow is initiated by the accumulation of grainfall deposits, close to the dune brink. When the accumulation, or `bulge', exceeds an angle of repose, avalanches are initiated and sediment is transported down the lee of the dune. The location of sediment accumulation, or avalanche initiation point, is determined by the distance that grainfall can travel from the dune brink. While previous studies have focused on determining angles at which avalanches occur, along with depositional flux rates, technical constraints have limited the testing of models to predict grainfall zone dynamics under varying wind conditions. Here we use terrestrial laser scanning (TLS) to measure both grainfall distance and associated lee slope surface change of a 5 m high barchan dune under variable wind speeds, on the Skeleton Coast, Namibia. We find that under stronger winds, the distance that grainfall can travel from the brink expands (by up to 0.45 m for a 3 m/s increase in wind speed). Along with this expansion of the grainfall distance there is an increase in saltation flux over the brink. The increased grainfall distance shifts sand further from the brink resulting in dominant avalanche initiation point locations expanding from 0.3 m to 0.4 m for wind speeds above 6 m/s. This shift also corresponds to the appearance of secondary avalanches, which are initiated by primary avalanche lobe deposits extending outside of the main grainfall zone. Ultimately, under stronger winds the expansion of the grainfall distance contributes to the destabilisation and movement of increased sediment volumes down the lee slope. Avalanches under stronger wind speeds, therefore, increase in thickness, width and length, while during weaker wind speeds, most of the grainfall and grainflow is limited to the upper section of the lee slope. The implication of this dual avalanche behaviour under variable wind conditions is an under prediction of dune mobility under strong winds and an over prediction under weaker winds. This study provides a valuable morphodynamics dataset which will benefit modelling efforts and offers insight into contemporary sedimentary accumulation and the influence of grainfall and grainflow dynamics on barchan dune mobility.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMEP13B1033N
- Keywords:
-
- 1051 Sedimentary geochemistry;
- GEOCHEMISTRYDE: 1165 Sedimentary geochronology;
- GEOCHRONOLOGYDE: 3002 Continental shelf and slope processes;
- MARINE GEOLOGY AND GEOPHYSICSDE: 4558 Sediment transport;
- OCEANOGRAPHY: PHYSICAL