Testing the Impact of a Multi-year, Curriculum-based Undergraduate Research Experience (MY-CURE) in the Geosciences: Baseline Observations
Abstract
Short-term undergraduate research experiences (URE's) provide skill and confidence enhancement to students, but it is unclear how effective they are in comparison to a dedicated, longer-term URE. This study examines the impact of a long-term URE embedded in a sequence of five courses in the geology curriculum. It begins with a sophomore course in environmental geology, and continues through mineralogy, structural geology, and petrology, before concluding at our summer geology field camp. In this sequence, they build upon individual URE's related to the structure and petrology of fault rocks from a mid-crustal shear zone. Rather than have students engage in one or more short-term URE's, they retain the same project for two calendar years so that we can assess when and how different gains, including a more sophisticated understanding of the nature of science, begin to emerge and mature. As each student progresses, we document the longitudinal development of a diverse suite of gains including: (1) Technical and higher-order research skills, (2) personal gains such as self-identity as a scientist, and (3) communication skills. In this presentation, we describe the framework of the study and baseline observations recorded during the first year of a 2-year cohort. Using a Q-sort method, students were given a deck of 16 index cards with an educational outcome listed on each. They sorted the cards into three piles: Those that encouraged an interest in geology, those that deterred an interest, and those with no impact. Participants discussed the top cards from the negative and positive piles. The top attractors to geology are collegial relationships with faculty, the opportunity to use scientific equipment, field work, the concreteness of geology, and the availability of jobs. Factors that deter interest include hours of tedious homework, math courses, and time invested in wrong answers or failed experiments/sample preparation. Factors not yet evident include confidence in ability to be a scientist, interest in graduate school, and higher-order research skills. These are expected to rise in prominence as the cohort progresses. Early observations underscore the importance of hands-on experience, the concreteness of geology as compared to more person-oriented fields of study, and opportunities for internships and jobs.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMED51F0834A
- Keywords:
-
- 0820 Curriculum and laboratory design;
- EDUCATIONDE: 0825 Teaching methods;
- EDUCATIONDE: 0840 Evaluation and assessment;
- EDUCATIONDE: 0850 Geoscience education research;
- EDUCATION