Indigenous Waters: Applying the SWAT Hydrological Model to the Lumbee River Watershed
Abstract
Hydrological modeling can reveal insight about how rainfall becomes streamflow in a watershed comprising heterogeneous soils, terrain and land cover. Modeling can also help disentangle predicted impacts of climate and land use change on hydrological processes. We applied a hydrological model to the Lumbee River watershed, also known as the Lumber River Watershed, in the coastal plain of North Carolina (USA) to better understand how streamflow may be impacted by predicted climate and land use change in the mid-21st century. The Lumbee River flows through a predominantly Native American community, which may be affected by changing water resources during this period. The long-term goal of our project is to predict the effects of climate and land use change on the Lumbee River watershed and on the Native community that relies upon the river. We applied the Soil & Water Assessment Tool for ArcGIS (ArcSWAT), which was calibrated to historical climate and USGS streamflow data during the late 20th century, and we determined frequency distributions for key model parameters that best predicted streamflow during this time period. After calibrating and validating the model during the historical period, we identified land use and climate projections to represent a range of future conditions in the watershed. Specifically, we selected downscaled climate forcing data from four general circulation models running the RCP8.5 scenario. We also selected land use projections from a cornerstone scenario of the USDA Forest Service's Southern Forest Futures Project. This presentation reports on our methods for propagating parameter and climatic uncertainty through model predictions, and it reports on spatial patterns of land use change predicted by the cornerstone scenario.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMED31B0874P
- Keywords:
-
- 0810 Post-secondary education;
- EDUCATIONDE: 0855 Diversity;
- EDUCATION