Teaching Hyporheic and Groundwater Flow Concepts Using an Interactive Computer Simulation
Abstract
We built an educational flow simulator with an interactive web-based interface that allows students to investigate the effects of arbitrary head functions on water flowing through various configurations of permeable/impermeable sediments. The domain consists of a 24 by 48 rectangular grid of sediments with no-flow bottom and side boundaries and a constant head surface water-groundwater (SWGW) interface boundary. The SWGW interface head function can be drawn freehand with the mouse or specified to be a step function, a sine curve, or a zig-zag function, where the amplitude and wavenumber parameters of the head functions are chosen by the user. The subsurface domain may be modified by drawing no-flow (impermeable) barriers in the sediment, changing any number of the 1152 grid cells into no flow cells. The program iteratively solves the Laplace equation to calculate head values at each grid cell within the sediment. Users can then start water particles along the SWGW interface and track their paths through the system to visualize the head-induced flow. Sediment cells can be color coded by head values or water speed. Exploring these systems with the simulator allows users to improve their understanding of the relationship between head and velocity as well as how the position of no-flow barriers impacts water flow in saturated sediments. These learning objectives are amenable to our target audience of undergraduate students, but younger (middle/high school) students may also be able to absorb key concepts by playing with the simulation. The structure of the simulation itself highlights the broader idea of simulation of natural processes through the discretization of continuous environments. The simulation was developed using the NetLogo platform and runs embedded in a webpage: http://susa.stonedahl.com/swgwsimulator. The simulation source code is available and can readily be modified by other educators (or students) to create additional features and options.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMED11B0899S
- Keywords:
-
- 0805 Elementary and secondary education;
- EDUCATIONDE: 0815 Informal education;
- EDUCATIONDE: 0825 Teaching methods;
- EDUCATIONDE: 0845 Instructional tools;
- EDUCATION