Molybdenum isotope fractionation during complexation with organic matter in the Critical Zone
Abstract
Molybdenum (Mo) is a micronutrient and a redox sensitive trace metal that also forms strong complexes with organic matter (OM). The fractionation of Mo in sediments associated with adsorption onto both iron (Fe) and manganese (Mn) (oxyhydr)oxides under oxic conditions and sulfide phases under euxinic conditions has been used to constrain redox conditions in the ocean. Additionally, Mo isotope dynamics in terrestrial systems can shed light on the pedogenic mechanisms driving the riverine Mo isotopic composition and how atmospheric inputs alter the trace metal budget and isotopic composition of soils. As a result of these studies, it has been hypothesized that multiple mechanisms are responsible for fractionating Mo isotopes. In particular, Mo fractionation during adsorption onto OM is unknown, despite the fact this mechanism is 3x to more than 20x greater than adsorption onto Fe- and Mn- (oxyhydr)oxides across a range of soil types from Oregon, Iceland, and Hawaii1-3 (Marks et al., 2015; Siebert et al., 2015; King et al., 2016). In this study, we measured Mo adsorption and isotopic fractionation onto insolubilized humic acid (IHA), a proxy for OM, as a function of both adsorption time (2-170 h) and pH (2-7). Preliminary results suggest that for the time series experiment, Mo adsorption onto IHA increased from 35% to 64% and a plateau was reached after 24 hours. The average Mo isotope fractionation between the solution and the IHA was Δ98Mosolution-IHA = 1.8 ± 0.3‰. For the pH series experiment, the average Mo isotope fractionation was Δ98Mosolution-IHA = 2.0 ± 0.2‰. Next, we compared the Mo isotopic composition of foliage, O-horizon, and surface soil from 12 sites in the Oregon Coast Range to better understand the impact of OM on Mo isotope dynamics in natural samples. The potential isotopic offset between dissolved and adsorbed Mo onto OM is of the same order of magnitude and direction as fractionation onto Fe- and Mn- (oxyhydr)oxides such as ferrihydrite, hematite, and birnessite which have Δ98Mosolution-oxide values of 1.1‰, 2.2‰, and 1.8‰, respectively (Goldberg et al., 2009; Wasylenki et al., 2011). These results have important implications for the interpretation of the sedimentary Mo record, its use as a paleoredox tracer, and its potential to record changes in the terrestrial weathering environment.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.V54A..07K
- Keywords:
-
- 1030 Geochemical cycles;
- GEOCHEMISTRYDE: 1041 Stable isotope geochemistry;
- GEOCHEMISTRYDE: 1065 Major and trace element geochemistry;
- GEOCHEMISTRYDE: 1094 Instruments and techniques;
- GEOCHEMISTRY