Quartz phenocrysts preserve volcanic stresses at Long Valley and Yellowstone calderas
Abstract
Magmatic processes and eruptions are the consequence of stresses active in volcanic environments. Few techniques are presently available to quantify those stresses because they operate in subsurface and/or hazardous environments, and thus new techniques are needed to advance our understanding of key processes. Here, we provide a dataset of volcanic stresses that were imparted to quartz crystals that traveled through, and were hosted within, pyroclastic and effusive eruptions from Long Valley and Yellowstone calderas. We measured crystal lattice deformation with submicron spatial resolution using the synchrotron X-ray microdiffraction beamline (12.3.2) at the Advanced Light Source, Lawrence Berkeley National Laboratory. Quartz from all units produces diffraction patterns with residual strains locked in the crystal lattice. We used Hooke's Law and the stiffness constants of quartz to calculate the stresses that caused the preserved residual strains. At Long Valley caldera, quartz preserves stresses of 187±80 MPa within pumice clasts in the F1 fall unit of the Bishop Tuff, and preserves stresses of 120±45 MPa from the Bishop Tuff welded ignimbrite. At Yellowstone caldera quartz preserves stresses of 115±30 and 140±60 MPa within pumices from the basal fall units of the Mesa Falls Tuff and the Tuff of Bluff Point, respectively. Quartz from near-vent and flow-front samples from Summit Lake lava flow preserves stresses up to 130 MPa, and show no variation with distance travelled. We believe that subsurface processes cause the measured residual stresses, but it remains unclear if they are relicts of fragmentation or from the magma chamber. The residual stresses from both Long Valley and Yellowstone samples roughly correlate to lithostatic pressures estimated for the respective pre-eruption magma storage depths. It is possible that residual stress in quartz provides a new geobarometer for crystallization pressure. Moving forward, we will continue to perform analyses and experiments on natural and synthetic crystals to better determine the source of residual stresses.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.V43E3196B
- Keywords:
-
- 8404 Volcanoclastic deposits;
- VOLCANOLOGYDE: 8428 Explosive volcanism;
- VOLCANOLOGYDE: 8434 Magma migration and fragmentation;
- VOLCANOLOGYDE: 8445 Experimental volcanism;
- VOLCANOLOGY