A vastly improved method for in situ stable isotope analysis of very small water samples.
Abstract
The stable isotope compositions of hydrogen and oxygen in water, ice and hydrated minerals are key characteristics to determine the origin and history of the material. Originally, analyses were performed by separating hydrogen and preparing CO2 from the oxygen in water for stable isotope ratio mass spectrometry. Subsequently, infrared absorption spectrometry in either a Herriot cell or by cavity ring down allowed direct analysis of water vapor. We are developing an instrument, intended for spaceflight and in situ deployment, which will exploit Capillary Absorption Spectrometry (CAS) for the H and O isotope analysis and a laser to sample planetary ices and hydrated minerals. The Tunable Laser Spectrometer (TLS) instrument (part of SAM on the MSL rover Curiosity) works by infrared absorption and we use its performance as a benchmark for comparison. TLS has a relatively large sample chamber to contain mirrors which give a long absorption pathlength. CAS works on the same principle but utilizes a hollow optic fiber, greatly reducing the sample volume. The fiber is a waveguide, enhancing the laser - water-vapor interaction and giving more than four orders of magnitude increase in sensitivity, despite a shorter optical path length. We have calculated that a fiber only 2 m long will be able to analyze 5 nanomoles of water with a precision of less than 1 per mil for D?H. The fiber is coiled to minimize instrument volume. Our instrument will couple this analytical capability with laser sampling to free water from hydrated minerals and ice and ideally we would use the same laser via a beam-splitter both for sampling and analysis. The ability to analyze very small samples is of benefit in two ways. In this concept it will allow much faster analysis of small sub-samples, while the high spatial sampling resolution offered by the laser will allow analysis of the heterogeneity of isotopic composition within grains or crystals, revealing the history of their growth.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.V43B3149C
- Keywords:
-
- 1040 Radiogenic isotope geochemistry;
- GEOCHEMISTRYDE: 1041 Stable isotope geochemistry;
- GEOCHEMISTRYDE: 1094 Instruments and techniques;
- GEOCHEMISTRYDE: 5494 Instruments and techniques;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS