On-line Differential Thermal Isotope Analysis: A New Method for Measuring Oxygen and Hydrogen Isotopes of Hydration Water in Minerals
Abstract
Oxygen (16O,17O,18O) and hydrogen (H,D) isotopes of hydration water in minerals provide a rich source of information about the conditions under which hydrated minerals form on Earth and other planetary bodies (e.g. Mars). We have developed a new method for measuring different types of bonded water (e.g., molecular, hydroxyl) contained in hydrated minerals by coupling a thermal gravimeter (TG) and a cavity ringdown laser spectrometer (CRDS). The method involves step heating a mineral sample, precisely measuring the weight loss and enthalpy as the sample undergoes dehydration and dehydroxylation, whilst simultaneously determining the oxygen and hydrogen isotopes of the water vapor evolved from the mineral sample by cavity ring-down laser spectroscopy (CRDS). Nitrogen carrier gas is used to transfer the sample from the TG to the CRDS via a heated line and interface box. The interface includes the capability of (i) cryogenic trapping discrete types of water for samples containing small amounts of water; (ii) injecting small quantities of water of known isotopic value for calibration; and (iii) converting volatile organic compounds to nascent amounts of water using a catalyst. The CRDS continually measures water vapor concentration in the optical cavity and hydrogen and oxygen isotope ratios. Isotopic values are calculated by integrating the product of the water amount and its isotopic value for the separated peaks after correcting for background. Precision of the method was estimated by comparing isotope results of total water for gypsum measured by DTIA with our conventional method of extraction and analysis (Gázquez et al., 2015. Rapid Communications in Mass Spectrometry, 29, 1997-2006). Errors for the isotopic values of total hydration water vary between ±0.08 and ±0.34 ‰ for δ18O and between ±0.16 and ±0.86 ‰ for δD. We demonstrate the application of the DTIA method to a variety of hydrous minerals and mineraloids including gypsum, clays, and amorphous silica (opal, glass, chert). The DTIA method has wide ranging application for addressing fundamental problems across many disciplines in Earth and Planetary Sciences, including: paleoclimatology, sedimentology, volcanology, water exchange between the solid earth and hydrosphere, and water on Mars and other planetary bodies.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.V33G..01B
- Keywords:
-
- 1040 Radiogenic isotope geochemistry;
- GEOCHEMISTRYDE: 1041 Stable isotope geochemistry;
- GEOCHEMISTRYDE: 1094 Instruments and techniques;
- GEOCHEMISTRYDE: 5494 Instruments and techniques;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS